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ABSTRACT

Implicit finite difference schemes for the 3-D wave equation using
a 27-point stencil on the cubic grid are presented, for use in room
acoustics modelling and artificial reverberation. The system of
equations that arises from the implicit formulation is solved us-
ing the Jacobi iterative method. Numerical dispersion is analysed
and computational efficiency is compared to second-order accurate
27-point explicit schemes. Timing results from GPU implemen-
tations demonstrate that the proposed algorithms scale over their
explicit counterparts as expected: by a factor of M + 2, where
M is a fixed number of Jacobi iterations (eight can be sufficient
in single precision). Thus, the accuracy of the approximation can
be improved over explicit counterparts with only a linear increase
in computational costs, rather than the quartic (in operations) and
cubic (in memory) increases incurred when oversampling the grid.
These implicit schemes are advantageous in situations where less
than 1% dispersion error is desired.

1. INTRODUCTION

Room acoustics simulations are important for the purposes of au-
ralization and artificial reverberation. There are many models and
techniques used in room acoustics simulations; see [1, 2] for a re-
view. One popular starting point for room acoustics modelling is the
second-order scalar wave equation with impedance boundary con-
ditions [3]. This model problem can be discretised with finite differ-
ence (FD) operators on regular spatial grids, and solutions can be ap-
proximated through explicit (leapfrog) time integration [4] at a sam-
ple rate of choice (e.g. 44.1 kHz). Explicit time-stepping FD meth-
ods have been used extensively in the literature for simulating room
acoustics [5, 6, 7] in various equivalent formulations [8, 9, 10, 11].

FD methods can be computationally expensive for large 3-D
spaces due to the fact that the solution is approximated for the
entire domain at each time-step. Furthermore, numerical dispersion
affects the approximation, to a large degree, in high frequencies.
This may require that the spatial grid be oversampled, which in-
curs cubic increases in memory usage and quartic increases in the
operation count. Explicit schemes are well-suited to implementa-
tion on graphics processing units (GPU), allowing for real-time
low-frequency [12] and offline full-bandwidth applications [13].

Numerical dispersion can be improved by employing implicit
generalisations of explicit schemes [14, 15], however, implicit
schemes require a linear system to be solved at each time-step.
This extra burden at each time-step can be alleviated somewhat
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when the implicit scheme allows for an alternating direction im-
plicit (ADI) decomposition [16, 15], since the overall system in
3-D ADI schemes can be decomposed into three tridiagonal sys-
tems that can be solved efficiently with the Thomas algorithm [16].
However, the Thomas algorithm is serial in nature, so it is not easily
parallelised. Furthermore, the formulation of impedance boundary
conditions that are compatible with the ADI decomposition and the
Thomas algorithm seems to be an open problem [7]. On the other
hand, simple iterative methods [17] can be employed to tackle the
implicit system, free from ADI constraints. The Jacobi method is
a simple iterative method whose iterations reduce to sparse matrix-
vector multiplications (SpMV) that are easily parallelised on a GPU.
The purpose of this paper is then to revisit implicit schemes in the
context of the Jacobi method and identify schemes that are suitable
for room acoustics applications and GPU implementations.

This paper is laid out as follows. The model problem is in-
troduced in Section 2, followed by the implicit finite difference
schemes in Section 3 and conditions for stability in Section 4. The
Jacobi method is described in Section 5, and optimal parameters
for the implicit schemes are chosen in Section 6. Numerical dis-
persion and computational efficiency are analysed in Section 7. In
Section 8, numerical experiments are conducted in order to validate
the implicit schemes, check convergence rates for the Jacobi solve,
and test the stability of the proposed schemes in finite precision
arithmetic. Section 9 presents timing results from CUDA imple-
mentations of the implicit schemes on an Nvidia Tesla K20 GPU
card, followed by conclusions and future work in Section 10.

2. MODEL PROBLEM

2.1. Initial and boundary value problem

The 3-D wave equation can be written as

�Ψ := ∂2
tΨ− c2∆Ψ = 0 . (1)

Here, t is time and t ∈ R+, x := (x, y, z) ∈ R3, c is the wave
speed, assumed to be a constant, and ∆ is the 3-D Laplacian op-
erator, ∆ := ∂2

x + ∂2
y + ∂2

z . The box symbol (�) represents the
d’Alembert operator and the scalar field Ψ = Ψ(t,x) represents the
acoustic velocity potential [3]. Two initial conditions, Ψ(0,x) and
∂tΨ(0,x), are required to complete the initial value problem (IVP).

For the boundary value problem (BVP), let V denote a closed
3-D volume and ∂V its boundary. Frequency-independent lossy
boundaries can be written as

n · ∇Ψ = (γ/c)∂tΨ , x ∈ ∂V , (2)

where γ represents the specific acoustic admittance with γ ∈ R,
γ ≥ 0 and where n is the outward normal vector at x ∈ ∂V .
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These become first-order absorbing boundary conditions of the
Engquist-Majda type for γ = 1. When γ = 0 the condition (2) is
a homogeneous Neumann (lossless) boundary condition.

3. AN IMPLICIT FINITE DIFFERENCE SCHEME

3.1. Discretising time and space

Time can be discretised by restricting t to the grid of points T :=
{nk, n ∈ Z+}, where k is the time-step, and the spatial domain can
be discretised using a cubic grid: G := hZ3. The finite spatial grid
to consider can then be written as G := G∩V . For the purposes of
this paper, the closed volume of interest will be a box-shaped room.
Furthermore, it will be assumed, for convenience and comparison
with published literature [7], that the “boundary nodes” of the grid
are precisely on the boundary ∂V .

3.2. Difference operators

Let u(t,x), which will be restricted to T×G or T×G, represent
an approximation to the solution of interest Ψ(t,x). A time-shift
operator may be defined as

et±u := u(t± k,x) , (3)

and the following abbreviation will be employed throughout this
paper: u± := u(t± k,x). Centered time-difference operators can
be written as

δt· := (et+ − et−)/(2k) = ∂t +O(k2) , (4a)

δtt := (et+ − 2 + et−)/k2 = ∂2
t +O(k2) . (4b)

A parameterised 27-point discrete Laplacian (stencil) can be defined
on the cubic grid as

δ∆u :=
∑
q

6αq
|Ωq|qh2

∑
v∈Ωq

(u(t,x+vh)−u(t,x)) = ∆u+O(h2) ,

(5)
where q ∈ {1, 2, 3}, Ωq := {x ∈ Z3 : ‖x‖2 = q}, where |Ωq|
denotes the cardinality of the set Ωq , and α := (α1, α2, α3) ∈ R3.∑
q αq = 1 is required for consistency. The 27-point stencil vectors

are displayed in Fig. 1.

3.3. Difference scheme for IVP

An implicit finite difference scheme for (1) can now be written as

δ�u :=
(
1 + βh2δ∆

)
δttu−c2δ∆u = 0 , (t,x) ∈ T×G , (6)

where β ∈ R is a free parameter. The scheme is consistent since
δ�u → �u as h → 0 for a fixed Courant number λ := ck/h.
Starting from the two known (or approximated) values u(0,x) and
u(k,x) determined by the initial conditions, the unknown variable
u+ is related to the two previous states by

(1 + βδh∆)u+ = ((λ2 + 2β)δh∆ + 2)u− (1 + βδh∆)u− , (7)

where δh∆ := h2δ∆. The unknown variable cannot be isolated
algebraically unless β = 0, in which case the scheme is explicit.
For β 6= 0 the scheme is implicit, and a linear system of equations
must be solved at each time-step. This family of implicit schemes
generalises the 27-point compact explicit schemes analysed in [7].
The operator δh∆ expressed in a similar notation to that used in [7]
can be found in the Appendix.

Figure 1: Stencil vectors for δ∆: Ω1 (black), Ω2 (red), Ω3 (blue)

3.4. Matrix update for BVP

Imposing the boundary condition (2) reduces (7) to a finite sys-
tem of equations which can be written as a matrix update. The
approximation for the BVP at a particular time t can be written as
the N × 1 vector u with the values of u for x ∈ G (N = |G|).
Similarly, u± is a vector of u± values. The operator ∂t in the lossy
case (2) can be discretised with δt· and the spatial derivatives are
approximated with centered spatial differences, following [7]. The
update equation in matrix form becomes

(γλQ+I+βL)u+ = ((λ2+2β)L+2I)u+(γλQ−I−βL)u− ,
(8)

where L is the N ×N Laplacian matrix corresponding to δh∆ with
discretised Neumann conditions, I is the N ×N identity matrix,
and Q is a non-negative diagonal matrix. Constructions for the
matrices L and Q are given in the Appendix. This matrix up-
date encapsulates the point-wise explicit updates presented in [7]
for interior, wall, edge, and corner nodes, in the special case of
frequency-independent boundaries.

4. NUMERICAL STABILITY

4.1. Stability for the IVP

First we consider stability conditions for the initial value problem.
The recursion in (7) must be numerically stable for ‖u−Ψ‖h → 0
as h→ 0 (for λ fixed) by the Lax-Richtmyer theorem, where ‖f‖h
denotes the spatial L2-norm of f(x) on G or G. Stability condi-
tions for (7) can be found by taking the Z-transform in time and the
Fourier transform in space [18]. After some cancellation we obtain
the following quadratic in z ∈ C:

(1− 4βΛ)z + 4Λ(λ2 + 2β)− 2 + (1− 4βΛ)z−1 = 0 , (9)

where Λ is the Fourier symbol of the operator − 1
4
δh∆. Solving for

the roots of the quadratic (9) it can be shown [8] that |z| ≤ 1 as
long as ∣∣∣∣4Λ(λ2 + 2β)− 2

1− 4βΛ

∣∣∣∣ ≤ 2 , (10)

given that Λ is non-negative, which is satisfied when

− 2α1 ≤ α2 ≤ 2α1 + 1 . (11)

Condition (10) then simplifies to the following

β <
1

4Λmax
, λ ≤ λmax :=

√
1

Λmax
− 4β , (12)

where Λmax := maxξ Λ for the spatial frequencies ξ ∈ R3. We
can extract Λmax from previous studies [8] since this must reduce
to the explicit case when β = 0. We have then

Λmax = max(1, 2α1 + α2, 2α1 − α2 + 1) . (13)

DAFX-2



Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14), Erlangen, Germany, September 1-5, 2014

Note, the stability conditions allow linear growth in the solution,
but this is valid since linear growth is permitted in the underlying
system [18].

4.2. Stability for the BVP

Stability conditions for the lossless boundary value problem are
straightforward to obtain using the matrix method [18]. Using the
ansatz u = zφ, where φ is an eigenvector of L, we get, analogous
to (9), the following quadratic in z with matrix coefficients:

z(I+βL)φ− ((λ2 +2β)L+2I)φ+z−1(I+βL)φ = 0 . (14)

This can be reduced to a set of decoupled scalar equations, and
thus, we can obtain a sufficient condition for stability in terms of
the spectrum of L. Comparing with (9) we can see that (12) is
sufficient for stability as long as L ≤ 0 (negative semi-definite)
and ρ(L) ≤ 4Λmax, where ρ(L) denotes the spectral radius of L.
The first condition on L is easily verified using Gerschgorin’s the-
orem [17]. That the condition ρ(L) ≤ 4Λmax is satisfied, with L
as defined in the Appendix, follows from stability in the explicit
case [7].

A matrix-type stability analysis becomes more difficult after
including the additional matrix Q, with γ > 0 for lossy boundaries,
because the matrix coefficients of the resulting quadratic equation
no longer commute. It is possible to show, through the use of en-
ergy techniques [19, 10] or by investigating reflection coefficients
at the boundaries [7], that the lossy case is stable as long as the
lossless case is stable and the boundaries remain passive (γ ≥ 0).
A detailed proof is left out for brevity.

5. SOLVING THE LINEAR SYSTEM

5.1. Jacobi method

To solve the linear system of equations with the Jacobi method we
first write (8) in the form Ax = b, where

A = (γλQ + I + βL) , x = u+ , (15a)

b = ((λ2 + 2β)L + 2I)u + (γλQ− I− βL)u− . (15b)

Next, we use the matrix splitting A = D−N where D is a diag-
onal matrix with just the main diagonal of A. Starting from any
initial guess x0 (a good choice is x0 = u), the Jacobi iterative
solve proceeds with

xn+1 = Hxn + b′ , (16)

where H = D−1N is the iteration matrix (sparse), b′ = D−1b
and where the superscript n on xn denotes the nth iteration (n ≥ 0).
Note that b′ only needs to be computed once per time-step. The
entire iterative solve can be accomplished with only four states
stored in memory since the space in memory that is used to store
u− can be overwritten after b′ has been calculated. This Jacobi
solve requires two SpMVs to compute b′ and M subsequent Sp-
MVs, where M is the number of iterations. Thus, the increase in
operations over the explicit case is a factor of M + 2. The memory
increase over the explicit case is a factor of two.

The iterative solve can be halted when the following condition
on the relative error is satisfied:

‖b−Axn+1‖h
‖b‖h

≤ E , ‖b‖h > 0 , (17)

where E is some threshold, such as IEEE 754 single precision
machine epsilon, εs ≈ 1.2×10−7, or double precision machine ep-
silon, εd ≈ 2.2× 10−16. Calculating the relative residual requires
one additional SpMV per iteration, as well as the calculation of two
discrete norms.

It is worth pointing out that while we use a matrix represen-
tation to illustrate the iterative method, a practical implementa-
tion does not require construction or storage of the matrices in-
volved. For practical implementations, one can ‘unroll’ each SpMV
into a (parallelisable) for-loop, as in the explicit case [13]. In
fact, the explicit case is expressed by a single Jacobi iteration
(β = 0⇒ H = 0). The matrices involved are sparse and have en-
tries that are mostly constant or zero along the diagonals, and the
non-zero entries change only for boundary nodes. The storage of
these constants is negligible. Point-wise updates can be extracted
from the matrices in the Appendix, or derived from the explicit case
in [7], so they are left out for brevity.

5.2. Convergence of the Jacobi method

The Jacobi iterations will converge from any initial guess x0 as
long as the matrix A is diagonally dominant [17]. For a diagonally
dominant A, in the lossless case, we require that∣∣∣∣∣1− 6β

∑
q

αq
q

∣∣∣∣∣ ≥ 6
∑
q

|βαq|
q

. (18)

If we assume that αq ≥ 0 then this reduces to

|β| < 1

12
, (19)

and in the general case |β| has to be sufficiently small. By exam-
ining L it can be seen that the rows pertaining to boundary nodes
will not change (19). This is also left out for brevity.

It can be shown that with each iteration the residual decreases
by a factor of approximately 1/ρ(H) [17], and using Gerschgorin’s
theorem the following bound on ρ(H) can be obtained:

ρ(H) ≤ Υ , Υ :=
6
∑
q

1
q
|βαq|∣∣∣1− 6β
∑
q

1
q
αq

∣∣∣ . (20)

Thus, we can neglect the residual calculation and fix the number of
iterations to M = d− log10(E)/ηe or M = b− log10(E)/ηc,
where η := − log10(Υ). The parameter η represents, approxi-
mately, the number of additional digits of relative accuracy obtained
with each iteration.

6. ISOTROPIC AND FOURTH-ORDER SCHEMES

To reduce the space of free parameters let us introduce some addi-
tional constraints. In the interest of isotropic error we can impose
the following constraint

α2 = 4/3− 2α1 , (21)

with which we get

δ∆u = ∆u+
h2

12
∆2u+O(h4) . (22)

The error will be isotropic (direction-independent) up to the O(h4)
term since the (isotropic) biharmonic operator ∆2 appears in the
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O(h2) term. Through the use of modified equation methods [14],
it is straightforward to arrive at the condition

λ2 = 1− 12β , (23)

to have a fourth-order local truncation error for the IVP

δ�u = �u+O(h4) . (24)

Under the isotropy constraint (21) the stability condition (12) re-
duces to

λmax,β,α1 =

{√
3/4− 4β 1/12 ≤ α1 ≤ 5/12√
3/(12α1 − 1)− 4β 5/12 < α1

,

(25)
and the constraints (11) and (19) reduce the parameter space of
stable fourth-order schemes to the following

1/12 ≤ α1 ≤ 5/12 , (26)

with λ =
√

5/8 ≈ 0.79 and β = 1/32. Finally, we can optimise
α1 with respect to η. Using (20) it can be shown that

η ∈ [log10(19/3), log10(7)] ≈ [0.802, 0.845] ,

for the region defined in (26). The optimal value, η = 0.845, is
given by α1 = 1/3, which corresponds to a scheme with a 19-point
stencil (α3 = 0).

7. NUMERICAL DISPERSION

At this point, we can analyse the numerical dispersion of the
schemes that are suitable candidates for the Jacobi iterative solve.
To further reduce the space of free parameters, we will restrict our
attention to two cases: α1 = 1/3 and α1 = 5/12. The former
leads to an isotropic 19-point stencil, and the latter is an isotropic
27-point stencil. The resulting finite difference schemes are implicit
generalisations of the “IISO1” and “IISO2” (interpolated isotropic)
explicit schemes [15, 7].

In order to analyse dispersion it helps to define a normalised
spatial frequency ξh := ξh and a normalised temporal frequency
ωk := ωk. We can then write Λ(ξh) as

Λ(ξh) =
∑
q

3αq
|Ωq|d

∑
v∈Ωq

sin2(ξh · v/2) , (27)

and the relative numerical wave speed (ideally unity), also known
as the dispersion coefficient, is defined as

ν(ξh) :=
ωk(ξh)

λ|ξh|
, ωk(ξh) := 2 arcsin

(
λ(Λ−1 − 4β)−

1
2

)
,

(28)
for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenumber cell of
the grid, which is a cube centered at zero with sides of length 2π.
Furthermore, by inverting the dispersion relation (in the region
where it is surjective) we can plot the numerical wave speed as a
function of spherical coordinates, where the radial coordinate rep-
resents the temporal frequency ωk and where the two polar angles
represent a plane-wave direction of propagation in R3 [15]. The
wave speed errors can be seen in Fig. 2a for the schemes α1 = 1/3
and β ∈ {0, 1/32} along the axial (center to face-center of B),
side diagonal (center to edge-center), and diagonal (center to ver-
tex) directions; these are the directions in which the extreme cases
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Figure 2: Numerical dispersion for various schemes

are generally found [7]. Fig. 2b shows the dispersion coefficient
along the same directions for the scheme with α1 = 5/12 and
β ∈ {0, 1/32}. It can be seen from these figures that the fourth-
order implicit schemes give improvements over their second-order
explicit counterparts in each direction.

The fourth-order condition (23) can also be ignored in order
to find a scheme optimised for some fixed amount of dispersion
error that can be tolerated, where dispersion error is defined as
|1− ν|× 100%. For example, the parameter β = 0.0465 is a good
choice for a 1% dispersion error tolerance. The dispersion errors
for α1 = 1/3 and β ∈ {1/32, 0.0465} are shown in Fig. 2c. More
optimised parameters will be given shortly. Note, the relative wave
speeds are plotted only up to a 5% or 10% dispersion error for the
purposes of showing detail. The minimum directional cutoff fre-
quencies, above which the modal density will be incorrect, are not
seen in the figures, but they are listed in Table 1 (ωk,cutoff). The cut-
off frequencies for the implicit schemes are near to ωk,cutoff for the
IISO1 (or IISO2) explicit scheme, which is (2/3)π rad/sample [7].

7.1. Relative computational efficiency

One can achieve any level of accuracy in the dispersion error up
to any desired temporal frequency (in Hz) with any (convergent)
scheme simply by reducing the spatial-step (for a fixed Courant
number), due to consistency with the model equation. Of course,
oversampling the grid incurs cubic increases in memory usage and
quartic increases in the operation count, so this quickly becomes
an impossible strategy for simulating large spaces. Nevertheless,
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Figure 3: Relative computational efficiencies for various implicit schemes
with α ∈ {1/3, 5/12} and explicit schemes, with the simplest scheme
(SLF) as reference. Table 1 lists relative comparisons where IISO1 and
FCC explicit schemes are reference schemes, also taking into account
Jacobi iterations.

this strategy exists, so we must take into account some measures
of computational costs in order to determine whether these im-
plicit schemes are more or less effective than their simpler explicit
counterparts with oversampled grids. First we will consider the
spatiotemporal density of points required to achieve a certain dis-
persion error globally, and then we will include additional costs
from the iterative solve.

As in [20, 7, 21], we start by investigating the relative compu-
tational efficiency (RCE), which is defined as the spatiotemporal
density of points (T×G) necessary to keep the dispersion error be-
low some tolerance level, relative to that required by some reference
scheme [20]. Thus, the RCE of a scheme, with some chosen refer-
ence scheme, is dimensionless and is a function of the dispersion er-
ror tolerance. As in [15, 7] we use the simplest explicit scheme [4],
also known as the “standard leapfrog” (SLF), as a reference. The
RCEs for the cases α1 ∈ {1/3, 5/12}with various choices of β are
shown in Fig. 3 for a 0.01-10% dispersion error tolerance. Along
the axial directions, the schemes with α1 ∈ {1/3, 5/12} have
the same dispersion (worst-case), so the RCEs for the implicit
schemes with α1 = 5/12 are the same as those with α1 = 1/3.
The explicit IISO2 (α1 = 5/12, β = 0) scheme is also equivalent
to IISO1 (α1 = 1/3, β = 0) in terms of its RCE.

Also included in Fig. 3 are the 13-point face-centered cubic
(FCC) explicit scheme (α1 = 0, α2 = 1) (on its native grid [21])
and the 27-point “interpolated wideband” (IWB) explicit scheme
(α1 = 1/4, α2 = 1/2), for comparison with existing literature [7,
21].1 As can be seen in Fig. 3, the implicit schemes have higher
RCEs than their explicit counterparts and, in particular, the fourth-
order scheme (β = 0.03125) becomes exponentially (linear on a
log scale) more efficient, relative to the second-order schemes, as
the dispersion error tolerance approaches zero.

Now taking into account the additional iterations that are nec-
essary for the Jacobi solve, the implicit schemes should be advan-
tageous if the RCE for some desired dispersion error tolerance is

1It is worth pointing out that the implicit generalisations of the FCC and
IWB explicit schemes were investigated, but they did not offer significant
improvements over the explicit cases. This can be traced to the lack of an
isotropic error term in their discrete Laplacians.

Table 1: Dispersion error tolerance levels where implicit schemes are
more computationally efficient than the FCC and IISO1 (or IISO2) explicit
schemes, taking into account Jacobi solve with M = d− log10(E)/ηe.
Also shown are the minimum directional cutoff frequencies, ωk,cutoff in
rad/sample.

α1 ∈ {1/3, 5/12} more eff. than FCC more eff. than IISO1
β η ωk,cutoff E = εs E = εd E = εs E = εd

0.04650 0.641 0.626π <1.1% − <1.3% −
0.04345 0.677 0.629π <0.98% − <1.2% <0.73%
0.04040 0.715 0.632π <0.92% <0.56% <1.1% <0.67%
0.03735 0.755 0.635π <0.79% <0.48% <0.98% <0.58%
0.03430 0.799 0.638π <0.70% <0.37% <0.88% <0.48%
0.03125 0.845 0.641π <0.53% <0.28% <0.70% <0.36%

greater than d− log10(E)/ηe+ 2 (the residual check is neglected).
Table 1 lists the dispersion error tolerances below which the im-
plicit schemes with α = 1/3 are more efficient than the FCC and
IISO1 (or IISO2) explicit schemes, in terms of point-wise updates
required for the iterative solve to converge in single and double
precision. As can be seen in the table, one can choose β to give an
implicit scheme that is more efficient than the FCC explicit scheme
for any dispersion error tolerance that is less than 1.1%. In double
precision, the implicit schemes become more favourable when the
dispersion error tolerance is less than 0.56%.

Using the same techniques, we could compare the schemes in
terms of the spatial grid densities, leading to memory costs required
for some dispersion error tolerance level. This relative comparison
is similar to what appears in Fig. 3, but the vertical axis would
represent the relative efficiency in terms of spatial grid density, and
it would be scaled by a factor of 3/4 (on a log scale) to reflect the
cubic increase in grid density versus the quartic increase in opera-
tions with oversampling of the grid. As such, we simply summarise
the main result. In terms of the extra memory storage required for
the Jacobi solve (two extra states), the implicit schemes become
more efficient than the explicit FCC and IISO1 schemes when the
dispersion error tolerance is <3.8% (vs. FCC) or <5.3% (vs. IISO1).

8. NUMERICAL EXPERIMENTS

8.1. Modal frequencies of cubic domain

The known analytical modes of a cubic-shaped room with lossless
boundaries provide a simple validation test that can also illustrate
some advantages of the implicit schemes. To this end, the low-
frequency response of a cubic domain with γ = 0 and with dimen-
sions (11 m)3 was simulated using the scheme with α1 = 1/3 in
explicit (β = 0) and implicit forms (β = 1/32). The first two
time-steps, u(0,x) and u(k,x), were set to a spatial Gaussian with
mean (1 m, 2 m, 3 m) (the domain is centered about the origin) and
variance 1 m2. The Courant number was set to λmax respectively
for both schemes and c = 340 m/s. To normalise for computational
costs (total number of operations), the implicit scheme withM = 5
iterations used a coarse grid of size 12x12x12, whereas the explicit
scheme used a finer grid of size 21x21x21. The outputs were read
at the grid points (4,6,3) and (8,12,6) for the implicit and explicit
schemes respectively (counting from one). Spectra of the outputs
from these simulations are shown in Fig. 4. As can be seen, the
implicit scheme results in a better agreement with the analytical
modal frequencies, despite having a coarser spatial grid.
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Figure 4: Comparison of low frequency responses for cubic room using
IISO1 explicit scheme (α1 = 1/3, β = 0) with grid size 21x21x21,
and fourth-order implicit scheme (α1 = 1/3, β = 1/32) with grid size
12x12x12 and M = 5. Dotted lines denote theoretical modal frequencies.

8.2. Relative residual with fixed number of iterations

It is also worth investigating the relative residual over time using
a fixed number of Jacobi iterations. Using the same test case, the
relative residuals obtained from conducting simulations with var-
ious choices of M are plotted in Fig. 5. As can be seen, the relative
residuals (jagged lines) remain smaller in magnitude than the ex-
pected residuals with magnitude 10−0.845M (dashed lines). In this
test case, the limits of single and double precision are effectively
reached with seven and 17 iterations respectively.

8.3. Stability in finite precision arithmetic

The stability conditions derived in Section 4 may not be sufficient
in practical situations due to unavoidable finite precision effects
(round-off error). Single precision may be preferred to double pre-
cision since GPU cards tend to have a better peak performance
for single precision arithmetic than double, and single precision
variables use half of the memory space on the GPU card. How-
ever, round-off error in single precision has been known to cause
late-time instabilities (after O(104) time-steps) with even the sim-
plest of explicit schemes (SLF) [22], while such instabilities are
rarely seen in double precision. A typical room impulse response
at 44.1 kHz will requireO(105) time-steps to be calculated, so it is
important to ensure the long-time stability of these schemes in sin-
gle precision. These round-off effects have been analysed using the
spectral properties of the one-step recursion (state space) matrix in
the explicit 27-point schemes [23]. Here, we consider the usual two-
step recursion, which does not necessarily encapsulate all round-off
errors, but focuses on the spectrum of the Laplacian matrix.

As described in Section 4.2, the two conditions: ρ(L) ≤ 4Λmax

and L ≤ 0, along with (12), lead to stability of the explicit/implicit
schemes. In practice, it is possible that these conditions will not
hold in the presence of round-off errors. However, measures can
be taken to protect against any consequent instabilities (exponen-
tial growth). Linear growth is possible at the stability limit, but
such growth is undesirable for room impulse responses. Setting
the Courant number slightly below its limit: λ = (1− µ)λmax, for
0 < µ≪ 1 prevents such growth (µ = 1e-4 is a good choice), as
well as any exponential growth near the Nyquist caused by round-
off errors [23]. To buffer against a violation of the second condition,
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Figure 5: Relative residual from implicit scheme (α1 = 1/3, β = 1/32)
after M iterations for simulation of cubic domain. Dashed lines denote ex-
pected residual, 10−0.845M . Jagged lines are measured relative residuals.
Machine epsilon for single and double precision are marked by arrows.

we can replace L with L − σI, for 0 < σ≪ 1, since it follows
from Gerschgorin’s theorem that L − σI ≤ 0 for σ sufficiently
large. This also causes a shift of modal frequencies, but the effect
is negligible for σ � ω/c, and σ should be on the order of 10−7.

To test these counter-measures, the IISO1 explicit scheme
(α1 = 1/3) and its fourth-order implicit counterpart (β = 1/32,
M = 8) were excited with a Kronecker delta (in space and time) on
a grid of size 26x10x10, and run for 106 time-steps. The excitation
was also DC-filtered [24] to eliminate any unwanted, yet valid,
linear drift in the solution.

In Fig. 6a, an exponential drift (DC instability [23]) can be
seen; this is caused by round-off error in single precision and is to
be corrected through the use of the σ parameter. Fig. 6b shows the
effect using a small σ, approximately 2εs, to correct such an insta-
bility (note the scaling on the horizontal axes in Figs. 6a and 6b).
The use of σ > 0 is not necessary in double precision (at least for
O(106) time-steps), as seen in Fig. 6c with σ = 0. Figs. 6d-6f
show the fourth-order implicit counterparts using eight iterations.
In double precision the implicit scheme is stable for 106 time-steps
with M = 8 and σ = 0 (Fig. 6f). Lossy boundaries (γ = 1e-5) are
employed in Figs. 6g-6h, which results in a decay in the responses.

It is important to point out a low-frequency amplitude mod-
ulation in Figs. 6b, 6e, and 6g. This is due to the DC mode
(ω = 0) being shifted by the effect of σ non-zero. A similar effect
arises when a so-called “hard source” is used as an excitation [25].
Here, the oscillation has a normalised frequency of approximately√
σπ rad/sample. The value of σ that will be required in single

precision should scale with the duration of the simulation. Thus, for
a typical room impulse response, σ should scale with the sample
rate, and this low-frequency oscillation should remain inaudible.
If desired, the artefact can be removed by applying another DC
blocking filter [24] to the output, as seen in Fig. 6h.

9. SIMULATIONS ON GPU

In this section, we present timing results from a basic CUDA im-
plementation of the implicit schemes on a single Nvidia Tesla K20
GPU card. The goal here is not to present speed-ups over single-
thread CPU codes, since significant speed-ups have been reported
for 27-point explicit schemes in various studies [12, 13, 26, 22].
The interest here is simply to compare GPU implementations of the
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Table 2: Timing results from computation of 2000 time-steps on a Tesla K20 GPU card for explicit schemes and implicit schemes using M Jacobi iterations
and the compute time increase (CTI) for each implicit scheme over its respective explicit counterpart. The CTIs are expected to be (M + 2) due to the
additional SpMVs required by the implicit schemes.

explicit implicit, M = 8 implicit, M = 12

δ∆ (Nx, Ny , Nz) precision time (s) time (s) CTI time (s) CTI
19-point (640,480,480) single 50 453 9.06 635 12.7
19-point (960,640,480) single 100 894 8.94 1254 12.5
27-point (640,480,480) single 75 608 8.11 846 11.3
27-point (960,640,480) single 148 1201 8.11 1676 11.3
19-point (640,480,480) double 79 801 10.1 1112 14.1
27-point (640,480,480) double 89 910 10.2 1242 14.0
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Figure 6: Responses from cubic box obtained using explicit/implicit
schemes with α1 = 1/3 in single precision (SP) and double precision
(DP), with λ = 0.9999λmax in each case. Implicit schemes use M = 8
iterations. Note that σ is not used in double precision. A DC blocking filter
was applied to the output in Fig. 6h.

explicit schemes and their implicit counterparts for a fixed number
of Jacobi iterations. Specific details on the GPU implementation
will be left out for brevity, but the implementation is similar in
nature to those found in [26, 22]. However, it is important to note
that the memory bandwidth was maximised by making use of the
read-only data cache in the Nvidia Kepler GPU architecture.

Table 2 lists the timing results from computing 2000 time-steps
for 19-point and 27-point explicit schemes (the choice of α is not
important here) and their implicit counterparts (the choice of β > 0
is not important) with a fixed number of iterations M ∈ {8, 12}.
Two different grid sizes were used and the simulations were run in
both single and double precision. Results for the larger grid size
are only given in single precision due to memory limitations on the
GPU card (5 GB).

We expect the implicit schemes to take M + 2 times as long as
their explicit counterparts due to the extra SpMVs (not taking into
account the extra memory bandwidth required). As can be seen in
Table 2, the implicit schemes are 10-20% faster than expected in
single precision. Meanwhile, in double precision they behave ap-

proximately as expected. These variations from the M + 2 increase
are due to cache effects and memory bandwidth bottlenecks.

10. CONCLUSIONS AND FUTURE WORK

In this study, we have presented 19- and 27-point fourth-order ac-
curate and optimised implicit finite difference schemes for the 3-D
wave equation with frequency-independent lossy boundaries on a
box-shaped domain. These schemes can be solved using the Jacobi
method with a convergence rate of nearly one digit of relative ac-
curacy per iteration. Numerical dispersion was analysed and it was
found that the implicit schemes, taking into account the iterative
solve, become more computationally efficient than second-order
explicit counterparts for situations where the amount of dispersion
error that can be tolerated is less than 1%, and exponentially more
efficient as this tolerance level approaches zero. These schemes
were shown to be stable in finite precision arithmetic for as many
as 106 time-steps in double precision, as well as in single precision
at the cost of introducing inaudible artefacts. Timing results were
presented from CUDA implementations run on an Nvidia Tesla
K20 GPU card. It was found that the compute times for the implicit
schemes scaled as expected with the additional SpMVs required.

Future work will investigate further generalisations for these
implicit schemes. The first is to consider a more general form for the
implicit scheme where different sets of α parameters are used for
the implicit and explicit discrete Laplacian operators, as in [14], pro-
viding more free parameters to optimise in order to further minimise
numerical dispersion. Another generalisation is to include viscother-
mal effects, which are necessary for a more detailed model of sound
propagation in air [3]. A third generalisation would be to consider
these schemes in an unstructured finite volume framework (allowing
for the modelling of irregular geometries) with more general (com-
plex) impedance boundary conditions, as in the explicit case [10].

More advanced iterative techniques that are amenable to par-
allel implementations (Krylov subspace methods) could also be
considered; many of which are known, for certain problems, to
converge in fewer iterations than the Jacobi method [17]. However,
preliminary tests with the system (15), using the myriad iterative
methods provided in MATLAB, indicate that while such advanced
techniques can converge in fewer iterations, they do not offer sub-
stantial improvements in compute times. Ultimately, this is because
they require more computation within each iteration (additional
SpMVs and residual checks), not to mention additional storage.
Finally, an important area of research will be to determine the mini-
mum number of Jacobi iterations required to simultaneously ensure
that the residual is inaudible and that stability is maintained for the
duration of a given simulation.
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Comparative sound examples for the implicit and explicit coun-
terpart schemes will be available for listening at:

http://www2.ph.ed.ac.uk/~s1164563/dafx14.
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12. APPENDIX

12.1. 27-point discrete Laplacian

Using a notation similar to [7] we have:

δh∆ = δxx+δyy+δzz+a(δxxδyy+δxxδzz+δyyδzz)+b(δxxδyyδzz)

where a = (α2 + 2α3)/4, b = α3/4, and

δxxu := u(t,x+ exh)− 2u(t,x) + u(t,x− exh)

with the standard unit vector in the x-direction ex. The operators
δyy and δzz are similarly defined.

12.2. 3-D Laplacian matrix with Neumann conditions

The Laplacian matrix corresponding to the centered Neumann con-
ditions from [7] can be constructed as follows. The 1-D Laplacian
matrix with centered Neumann conditions is:

DN =


−2 2
1 −2 1

. . .
. . .

. . .

1 −2 1
2 −2

 .
Let IN represent the N ×N identity matrix. Consider a 3-D grid
with dimensions Nx ×Ny ×Nz and let it be decomposed into a
vector, first into z-planes, then y-rows and x-columns. We construct
the matrices

Dxx := INz ⊗ INy ⊗DNx ,

Dyy := INz ⊗DNy ⊗ INx ,

Dzz := DNz ⊗ INy ⊗ INx ,

where ⊗ denotes the Kronecker product. The Laplacian matrix of
interest can then be written as

L = Dxx + Dyy + Dzz

+ a(DxxDyy + DxxDzz + DyyDzz) + b(DxxDyyDzz) .

12.3. Loss matrix

The matrix Q can be constructed as follows. Let qN be the vector:
(1, 0, . . . , 0, 1)T of length N . We construct the matrices

Qx := INz ⊗ INy ⊗ qNx ,

Qy := INz ⊗ qNy ⊗ INx ,

Qz := qNz ⊗ INy ⊗ INx .

Then we have Q = Qx + Qy + Qz .
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