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ABSTRACT

Time-domain finite difference (FD) and digital waveguide mesh
(DWM) methods have seen extensive exploration as techniques
for physical modelling sound synthesis and artificial reverberation.
Various formulations of these methods have been unified under the
FD framework, but many discrete boundary models important in
room acoustics applications have not been. In this paper, the finite
volume (FV) framework is used to unify various FD and DWM
topologies, as well as associated boundary models. Additional
geometric insights on existing stability conditions provide guidance
into the FV meshing pre-processing step necessary for the acoustic
modelling of irregular and realistic room geometries. DWM “1-D”
boundary terminations are shown, through an equivalent FV formu-
lation, to have a consistent multidimensional interpretation that is
approximated to second-order accuracy, however the geometry and
wall admittances being approximated may vary from what is de-
sired. It is also shown that certain re-entrant corner configurations
can lead to instabilities and an alternative stable update is provided
for one problematic configuration.

1. INTRODUCTION

Finite difference (FD) methods applied to time-domain partial dif-
ferential equations have a long history [1] and have, more recently,
become popular techniques for wave simulation in musical acous-
tics and room acoustics modelling. FD methods have appeared in
the acoustics literature in various forms, including the digital waveg-
uide mesh (DWM) [2, 3], and the “finite difference time domain”
(FDTD) [4, 5] and transmission line matrix (TLM) methods [6]
adapted from electromagnetics [7, 8, 9]. The DWM and TLM meth-
ods were originally expressed in terms of scattering variables, but
they are equivalent to FD methods when expressed solely in terms
of nodal quantities [2, 8, 10].

Finite element (FE) methods comprise another major family of
numerical methods that can be used for time-stepping wave simula-
tions [11]. FE methods are based on unstructured grids of cells and
interpolants defined over points within those cells. One advantage
of FE methods over FD methods is that they are well-suited to
irregular geometries (boundaries), whereas FD methods are suited
to simple geometries, or “staircase” approximations to irregular
boundaries. FE methods have been applied to musical acoustics
problems [12], though generally not for sound synthesis.

Finite volume (FV) methods can be seen as a medium between
these two methods [13], as they are based on grids of volumetric
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cells and differences between points within those cells. FV methods
on Cartesian grids were introduced to room acoustics and shown to
be equivalent to the Cartesian FDTD method [14, 4], but they have
not seen the same popularity as the finite difference based meth-
ods. Recently, FV methods have been reintroduced for acoustical
applications, but on unstructured grids and with rigorous energy-
based stability analyses, allowing for the modelling of irregular
geometries [15].

FV schemes can reduce to FD schemes on the interior do-
main when the tiling is regular, providing computationally efficient
calculations appropriate for large domains such as in 3-D room
acoustics modelling. This was shown for the Cartesian case and the
2-D hexagonal case [15] and later on the 3-D face-centered cubic
(FCC) grid with rhombic dodecahedral cells [16]. Equivalences
such as these remain to be determined for the rest of the DWM
topologies. This is the first contribution of this study, which is pre-
sented in Section 4, after the introduction of the model equations
and finite volume formulations in Sections 2 and 3. The second
contribution of this study is a geometrical interpretation of passiv-
ity conditions at boundary cells (given certain constraints on the
tiling), which provides insight towards meshing of irregular do-
mains (Section 5). Various boundary models have been presented
for FD/DWM methods [3, 17, 18], but their FV interpretations have
yet to be determined. This is the third contribution of this study
(Section 6). Conclusions and future work are given in Section 7.

2. MODEL EQUATIONS

2.1. Second-order wave equation

There have generally been two departure points for time-domain
finite difference schemes in acoustics. The first is the second-order
wave equation:

∂2
tΨ− c2∆Ψ = 0 , (1)

where Ψ := Ψ(t,x) represents a velocity potential field, t ∈ R+

is time, x is a position vector within a d-dimensional closed vol-
ume V ⊂ Rd, ∆ is the d-dimensional Laplacian operator, ∆ :=∑d
i=1 ∂

2
xi , and c is the wave speed, assumed to be constant. The

notation ∂t denotes the partial derivative with respect to t, and
similarly for spatial directions. The most common FD scheme for
this equation was provided by Courant et al. [1], and the multidi-
mensional extensions (d ≥ 3) can be found in [19]. It was later
applied to acoustic modelling for seismology [20], with Ψ as the
variable of interest. Another wave equation can be found in the
pressure field p := p(t,x) through the use of the first of the two
following relationships:

p = ρ∂tΨ , v = −∇Ψ , (2)
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where ρ represents the density of air and v := v(t,x) is the particle
velocity field. The pressure wave equation is then

∂2
t p− c2∆p = 0 . (3)

Eqs. (1) and (3) are ultimately equivalent, but one must take care in
choosing the appropriate source, boundary conditions, and output
for (3) as it is one time-derivative higher than (1). FD methods were
also applied to Eq. (3) for seismology [21], and later, DWM meth-
ods derived from networks of “acoustic tubes” were also expressed
as FD schemes for this wave equation in 2-D [2] and in 3-D [3].

2.2. Conservation equations

The second departure point has been the following linear hyperbolic
system, i.e. the conservation equations:

1

ρc2
∂tp = −∇ · v (cons. of momentum) , (4a)

ρ∂tv = −∇p (cons. of mass) , (4b)

where ∇· and ∇ are the d-dimensional divergence and gradient
operators respectively. The FDTD1 method, a popular technique for
simulating Maxwell’s equations on staggered grids, was adapted to
the acoustics equations (4a) and (4b) for the purposes of vocal tract
simulation [5] and room acoustics modelling [4]. These equations
were also approached using TLM methods adapted from electro-
magnetics [6], and FV methods [14]. It is straightforward to check
that these are different forms for the same underlying system, i.e.
(4a) and (4b) give (3), and (1) is recovered using (2). Similarly,
it has been shown that the various discretised forms (FD, DWM,
TLM, FDTD, FV) are equivalent when implemented on Cartesian
grids [24, 23, 2, 3, 10, 22, 15].

3. FINITE VOLUME APPROXIMATION

3.1. Cells and tiling

The following describes a general notation for a tiling of the volume
V by cells in d-dimensions, which will be used to derive a finite
volume approximation for the model equations. A tiling of V is
made up of closed cells Ci indexed by i ∈ I , whose interiors are
pairwise disjoint, i.e.

⋃
i∈I Ci = V , and the boundary of each cell

is denoted by ∂Ci. A (d− 1)-dimensional face (or side) of the cell
Ci is denoted by Sij := Ci ∩Cj = Sji and its (d− 1)-dimensional
volume is Sij . Any cell Cj such that Sij 6= {} is a neighbour-
ing cell of Ci. Let Ni be the index set of the neighbouring cells
of Ci and let Ki := |Ni|, where |Ni| denotes the cardinality of
the set. A boundary face is denoted by Si(b) := Ci ∩ ∂V and its
(d − 1)-dimensional volume is denoted by Si(b). Finally, let I(i)
and I(b) represent the index sets where Si(b) = 0 and Si(b) > 0
respectively. Note, in 1-D cell-faces are just points, so it suffices to
set all measures Sij = 1 when Sij 6= {} and likewise, Si(b) = 1
when Si(b) 6= {} for the case d = 1. The tiling will also have an

1In this study, the acronym “FDTD” will refer only to staggered schemes
for the system (4) which were adapted from the electromagnetics litera-
ture [7, 9]. Second-order wave equation schemes, which are much older [1],
are more commonly (and efficiently [22]) employed will simply be called
“FD methods” to be more consistent with the larger body of literature on
numerical methods for such equations [1, 19, 23] and their applications
in various fields [24, 20, 21]. The additional “time-domain” distinction is
not necessary here, since this is implied by the model equations.
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Figure 1: A section of a 2-D tiling, and the triangulation of its grid of
points G. The interior is shaded and part of the boundary ∂V is denoted
by the thick line.

associated grid of points G := {xi ∈ V, i ∈ I} such that xi is not
a point shared with other cells, i.e. xi ∈ Ci \ (

⋃
j∈Ni

Sij).
For the purposes of this paper, it will be assumed that Ci is the

Voronoi cell of xi for i ∈ I(i) and it will be further assumed that
the line segment with endpoints xi and xj (denoted by xij) for
j ∈ Ni is oriented normal to Sij and passes through that side. Not
all Voronoi tessellations have this “line of sight” property; those
that do are the dual tilings of Pitteway triangulations (of G) [25].
Such a tiling is illustrated in Fig. 1.

3.2. Integral form

A finite volume formulation can be derived starting from the acous-
tic velocity potential wave equation and integrating over the volu-
metric cell Ci, ∫

Ci
∂2
tΨ dV = c2

∫
Ci

∆Ψ dV . (5)

Using ∆Ψ = ∇ · ∇Ψ and the divergence theorem gives∫
Ci
∂2
tΨ dV = c2

∫
∂Ci

n · ∇Ψ dσ , (6)

where n denotes the outward normal vector at x ∈ ∂Ci. Then using
∂Ci = (

⋃
j Sij) ∪ Si(b), (6) can be written as∫

Ci
∂2
tΨ dx = c2

∑
j∈Ni

∫
Sij

n · ∇Ψ dσ − c2
∫
Si(b)

n · v dσ . (7)

The last term isolates the velocity field pointing out of the boundary,
which can be used to implement impedance boundary conditions.

3.3. Finite volume schemes

Let Ψ̂ = Ψ̂(t,x) represent an approximation to the acoustic veloc-
ity potential Ψ(t,x), and the following abbreviated notation will
be used: Ψ̂±i := Ψ̂(t ± k,xi) for some time-step k. The differ-
ence operators that will provide a discrete approximation to (7) are
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Table 1: Isohedral cells and FD/DWM/FDTD equivalents (found in the literature) for pointwise FV approximations

cell (Ci) dim. (d) Ki
2d
Ki

δ∆ = ∆ +O(hq) grid FD/DWM scheme staggered (FDTD) scheme for (4)

line segment 1 2 1 q = 2 integer lattice standard FD scheme [1] [24, 23]
regular triangle 2 3 4/3 q = 1 honeycomb grid “hexagonal DWM” [26] -

square 2 4 1 q = 2 square grid standard FD scheme [1] Yee’s 2-D scheme (FDTD) [7]*
hexagon 2 6 2/3 q = 2 hexagonal grid hexagonal FD scheme [27] hexagonal FDTD [28]*

cube 3 6 1 q = 2 cubic grid standard FD scheme [19] Cartesian FDTD [4, 5]
regular tetrahedron† 3 4 3/2 q = 1 diamond grid “tetrahedral DWM” [26] -

octahedron† 3 8 3/4 q = 2 BCC grid “octahedral FD” scheme [10] -
rhombic dodecahedron 3 12 1/2 q = 2 FCC grid “dodecahedral DWM” [29] -

†does not tile space *see Footnote 2

defined as follows

δt±Ψ̂i := ± 1

k
(Ψ̂±i − Ψ̂i) , (8a)

δtt := δt+δt− = δt−δt+ , (8b)

δijΨ̂i :=
1

hij
(Ψ̂j − Ψ̂i) = −δjiΨ̂i , (8c)

where hij = ‖xij‖ and xij := xj − xi.

Eq. (7) can be approximated by replacing Ψ with Ψ̂ and then
applying difference operators in the place of continuous deriva-
tives. It must also be assumed that the approximation Ψ̂ is constant
(averaged) over cells and boundary sides [15]. This results in the
following

Vi
c2
δttΨ̂i =

∑
j∈Ni

SijδijΨ̂i − Si(b)v̂i(b) , (9)

where v̂i(b) represents the boundary term averaged over Si(b), to be
specified by the boundary conditions. Due to the imposed restric-
tions on the Voronoi tessellation, δijΨ̂i can be seen as a centered
difference about some point on the face Sij , and the approximation
will be second-order accurate.

A finite volume approximation of the conservation equations
can also be recovered by defining approximations to the pressure
and velocity field, denoted by p̂ and v̂ respectively, on staggered
grids in space and time. Consider the following spatial and temporal
half-step shift operators, applied to some function u(t,x):

et±ui := u(t± k/2,xi) , (10a)
eij±ui := u(t,xi ± xij/2) = eji∓ui . (10b)

The pressure and velocity approximations are then staggered as

p̂i := et−p̂(t,xi) , (11a)
v̂ij := xij · eij+v̂(t,xi) , (11b)

and these are related to Ψ̂i using

p̂i = ρδt−Ψ̂i , (12a)

v̂ij = −δijΨ̂i , (12b)

resulting in the equivalent (to (9)) staggered scheme:

Vi
ρc2

δt+p̂i = −
∑
j∈Ni

Sij v̂ij − Si(b)v̂i(b) , (13a)

ρδt−v̂ij = −δij p̂i . (13b)

When Ci is a hexahedron, that is, the Voronoi cell of a “quasi-
Cartesian” grid (d = 3), (13) defines the FV scheme proposed
in [14]. The FV framework presented in [15] generalises these FV
schemes to unstructured grids of polytopes (d ≥ 1).

Finally, by applying ρδt− to both sides of (13a) and substituting
in (13b), or simply by applying (12a) to (9), a wave equation scheme
for the pressure can be recovered, with an isolated boundary term:

Vi
c2
δttp̂i =

∑
j∈Ni

Sijδij p̂i − ρSi(b)δt−v̂i(b) . (14)

4. EQUIVALENCES WITH FD/DWM/FDTD SCHEMES

4.1. Pyramidal decomposition

In this section, only the interior cells will be considered (i ∈ I(i)),
so Si(b) = {}, or Si(b) = 0. Taking into account the previously
imposed restrictions (“line of sight”), an interior cell can then be di-
vided into Ki d-dimensional pyramids Pij with bases Sij , heights
hij/2, and a shared apex xi. As is commonly known, the area of
a 2-D pyramid (a triangle) is the area of the base times the height
divided by two. This extends to d-dimensions [30], giving

Vi =
∑
j∈Ni

Vij , Vij := Sijhij/(2d) . (15)

A cell Ci will be called “isohedral” (face-transitive) when the param-
eters Sij and hij are constants (Sij = Si, hij = hi for j ∈ Ni).
The volume of an isohedral cell is then simply

Vi = KiSihi/(2d) . (16)

This pyramidal decomposition is illustrated in Fig. 2 for square and
hexagonal cells (d = 2), and various isohedral cells are listed in
Table 1 for d ∈ {1, 2, 3}.

xi

hi
2

Si

xi

Si

hi
2

Figure 2: Square and hexagonal cells divided into pyramids. Si denoted
by thick line, hi/2 denoted by dotted line.

4.2. Discrete Laplacians and wave equation FD/DWM schemes

Various FV schemes can be simplified using the pyramidal decom-
position. The wave equation scheme in (14), for the isohedral cells
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listed in Table 1, can be written as

δttp̂i = c2δ∆p̂i , δ∆p̂i :=
2d

Kih2
i

∑
j∈Ni

(p̂j−p̂i) = ∆p̂i+O(hq) .

(17)
The spatial operator δ∆ represents a discrete Laplacian with first
(q = 1) or second-order (q = 2) accuracy, and (17) represents
one of the various FD/DWM schemes that have appeared in the
literature, as summarised in Table 1. Note, the regular tetrahedron
and the octahedron do not tile space so they do not permit a full
finite-volume approximation over V . Nevertheless, the FD schemes
derived from their single cell approximations are equivalent to the
pointwise approximations from their associated FD/DWM schemes.

4.3. Discrete divergence and FDTD staggered schemes

Staggered (FDTD) schemes that employ isohedral cells can also
be recovered from FV schemes. Using the pyramidal decomposi-
tion, (13a) becomes

1

ρc2
δt+p̂i = −δ∇·v̂i , δ∇·v̂i :=

2d

Kihi

∑
j∈Ni

v̂ij (18)

The spatial operator δ∇· is essentially a discrete divergence oper-
ator, but this is more clear in the following special case. When the
cell Ci is made up of pairs of parallel faces (Ki is even), the set Ni
can be divided into two non-overlapping complementary sets Ni,1
and Ni,2 each with Ki/2 elements such that for every j ∈ Ni,1
there is a complementary index j∗ ∈ Ni,2 where xij = −xij∗ .
Making use of the skew-symmetry v̂ij = −v̂ji results in

δ∇·v̂i =
2d

Ki

∑
j∈Ni,1

1

hi
(eij+ − eij−)(xij · v̂i) ≈ ∇ · v̂i , (19)

which is, more clearly, a sum of centered spatial differences in
the directions of xij for j ∈ Ni,1. This defines the discrete di-
vergence used in the Cartesian case (xij for j ∈ Ni,1 become
the standard unit vectors in Rd), leading to the staggered schemes
adapted from Yee’s scheme for Maxwell’s equations [5, 4]. Fur-
thermore, (18) leads to a hexagonal staggered scheme for acoustics
similar in principle to one derived for Maxwell’s equations [28].2

In 3-D this leads to staggered schemes on the face-centered cubic
(FCC) and body-centered cubic (BCC) grids. These equivalences
are also summarised in Table 1. Clearly, these staggered schemes
are all equivalent to their second-order wave equation counterparts,
which generalises the link that has been established in the Cartesian
case [22]. The staggered FDTD formulation is known to be less effi-
cient than the wave equation formulation in the Cartesian case [22],
and this can be shown for the non-Cartesian FDTD extensions for
acoustics (left out for brevity). Wave equation schemes are also
more efficient than their DWM forms in d > 1 [10].

5. STABILITY/PASSIVITY CONDITIONS

In this section, additional geometric insights will be provided
on the stability conditions derived in [15], but the full energy
analysis provided in [15] will be omitted for brevity. First, con-
sider the lossless case, where the boundary velocity is set to zero,

2Maxwell’s equations in polarised form (2-D) can be adapted to the
acoustics equations (4) with a simple change of variables [31]. It is
straightforward to show that this also applies to the 2-D FDTD schemes.

xi

v̂i1

−v̂i3

v̂i2−v̂i4 xi

v̂i1

−v̂i4

v̂i2

−v̂i5

−v̂i6

v̂i3

Figure 3: Square and hexagonal cells for staggered grid (FDTD) schemes

i.e. v̂i(b) = 0, i ∈ I(b). In the lossless case it can be shown that
the total numerical energy remains bounded (stability) when the
following condition is satisfied for each cell (i ∈ I) [15]:

k2 ≤ 2Vi
c2
∑
j∈Ni

Sij/hij
. (20)

This appears to be the condition derived in [4] (considering only
quasi-Cartesian grids) but, in fact, it is different. The condition
derived in [4] does not distinguish between interior sides Sij and
boundary sides Si(b), whereas the boundary sides are not counted
in the denominator of (20). As such, condition (20) becomes more
relaxed at the boundaries for Cartesian cells. The importance of
this detail will be pointed out in Section 6.2.

5.1. A sufficient condition for interior isohedral cells

Further insight on condition (20) can be obtained when it is as-
sumed that a “locally irregular” tiling is used, which means that the
cells are isohedral and congruent when i ∈ I(i), but they may vary
for i ∈ I(b). Thus, Ki = K, Sij = S, hij = h, and Vi = V for
i ∈ I(i). For an interior cell (i ∈ I(i)) the stability condition then
becomes

k2 ≤ 2V

c2K(S/h)
. (21)

Using V = KSh/(2d), the above reduces to

k2 ≤ h2/(c2d) , (22)

or more simply, λ ≤
√

1/d where λ := ck/h is the Courant
number. This can be recognised as the condition obtained from
von Neumann analysis for many schemes, including the Cartesian
one [19]. In certain cases the von Neumann bound is more relaxed,
such as in the hexagonal [10] and FCC schemes [16], as well as
many parameterised schemes [10]. It is perhaps more appropriate
to call (22) the “passivity condition” [10], since it implies that a
DWM/TLM network implementation made up of concretely passive
elements is possible, from which stability follows [32].

5.2. A sufficient condition for boundary cells

Now condition (20) will be simplified for boundary cells (i ∈ I(b)).
It will be assumed that hij = h, which implies that Ci has been cut
or enlarged, but the point xi has not moved from its regular posi-
tion (for i ∈ I(b)). It is straightforward to prove that λ =

√
1/d

is sufficient for stability at boundary cells that are congruent to
interior cells (e.g., “staircase boundaries”); the denominator in (20)
decreases but the total volume Vi does not, so the local condition
at the boundary cell is more relaxed than λ ≤

√
1/d.

Next, consider the case where the boundary cells are not con-
gruent to the interior cells, which amounts to special cases of “fitted
boundaries”. Removing the volumes of the interior pyramids Pij
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Some boundary cell types possible for a locally irregular square
tiling. Green denotes positive V ∗i , red denotes negative V ∗i . Black line
denotes Si(b). Dotted lines denote pyramid divisions. (a)-(f) are stable
with λ =

√
1/2, (g) and (h) are not.

from the volume of the cell Ci leaves a quantity denoted by V ∗i ,

V ∗i := Vi −
∑
j∈Ni

Sijh/(2d) . (23)

Then starting from (20), a bound on k2 is

k2 ≤ 2Vi
c2
∑
j∈Ni

Sij/h
≤
∑
j∈Ni

Sijh+ V ∗i

c2d
∑
j∈Ni

Sij/h
(24a)

≤ h2/(c2d) when V ∗i ≥ 0 . (24b)

Thus, λ =
√

1/d is sufficient as long as V ∗i ≥ 0. This condition
is illustrated in Fig. 4 with some example 2-D cells in a locally
irregular square tiling. Figs. 4g and 4h illustrate the types of cells
that should be avoided since they will enforce more strict stabil-
ity conditions than what is obtained from interior cells. This can
be detrimental in audio applications as it reduces the overall tem-
poral bandwidth of the output [33] and reduces the efficiency in
minimising dispersion error [34].

It is worth pointing out a link with “conformal methods” for
irregular boundary modelling in acoustical FDTD simulations [35,
36, 37]. These techniques are, ultimately, staggered schemes on
locally irregular Cartesian grids, and more specifically, the “fitted
boundaries” considered here. It was empirically found that a certain
minimum volume had to be kept for locally conforming boundary
cells, otherwise instabilities would be experienced [35, 36, 37], but
a stability condition was not obtained. The condition that needs to
be satisfied in such conformal methods is indeed the geometric one
described here (V ∗i ≥ 0), or more generally, condition (20).

6. BOUNDARY MODELS

Some commonly used discrete boundary models in FD/DWM meth-
ods can be shown to have equivalent FV formulations. To be con-
sidered are the simplest frequency independent lossy boundary
conditions:

n · v = (γ/ρc)p , x ∈ ∂V . (25)

where γ ≥ 0 represents the specific acoustic admittance. Apply-
ing one temporal derivative and employing (4b) gives the pressure
boundary condition

− n · ∇p = (γ/c)∂tp . (26)

Frequency-independent lossy boundaries are achieved in the FV
framework by discretising (25), while (26) has been the preferred
condition in FD-based studies [38, 18, 33]. It will be seen that the
FV and FD discretisations are essentially the same. To this end, the
following average and difference operators will be necessary:

µt+p̂i =
1

2
(p̂+
i + p̂i) , δt·p̂i =

1

2k
(p̂+
i − p̂

−
i ) . (27)

(a) DWM modelling (b) FV equivalent

Figure 5: Desired L-shaped domain in blue, modelled using 1-D DWM
boundaries (left) and equivalent FV interpretation (right). Dashed lines
indicate connectivity, or DWM delay lines. Notice that adjacent boundary
nodes are not interconnected, in both cases.

In the FV formulation from [15], (25) is discretised on Si(b) with

v̂i(b) = (γ/ρc)µt+p̂i . (28)

Applying ρδt− and using the identity δt· = µt+δt− gives

ρδt−v̂i(b) = (γ/c)δt·p̂i , (29)

and now defining a fictitious “ghost point” xg := xi +n/2 outside
of the domain (as employed in the FD framework, but unnecessary
in the FV framework), one could write (29) as

− δig p̂i = (γ/c)δt·p̂i , (30)

which is a (centered) FD discretisation of (26). This is just a starting
point for equivalences between FV boundaries and FD boundaries.
Still to consider are specific boundary geometries and boundary
cell types.

It can be shown that as long as the interior energy remains
bounded, the only extra condition for stability is γ ≥ 0 (passiv-
ity) [15]. In other words, if the lossless case is stable then the lossy
boundaries will remain stable. Thus, when γ ≥ 0, the stability
of the scheme is ensured with λ ≤

√
1/d as long as V ∗i ≥ 0

for i ∈ I(b).

6.1. DWM “1-D boundaries”

Using the DWM paradigm, boundaries in d > 1 are set via 1-D con-
nections from boundary nodes to interior nodes. This is somewhat
of an ambiguous way to set the boundaries, but it has the advantage
of ensuring stability by virtue of a concretely passive network. For
convenience, the DWM boundary node update, connected to Ki

interior nodes, will be expressed in the FD equivalent formulation
(the so-called “Kirchoff DWM”). Adapted from [17], the update is

(γ′ +Ki)p̂
+
i = 2

∑
j∈Ni

p̂j + (γ′ −Ki)p̂
−
i , i ∈ I(b) , (31)

where γ′ is meant to represent the desired γ in (26), but its precise
value is to be determined. Dividing (31) through by Ki gives(

(γ′/Ki) + 1
)
p̂+
i = (2/Ki)

∑
j∈Ni

p̂j +
(
(γ′/Ki)− 1

)
p̂−i .

(32)
The Courant number is set to λ =

√
1/d for a DWM (by construc-

tion). In order to obtain the familiar DWM cancellation of the p̂i
term that would have appeared in the summation (see (17)) with
the term 2p̂i left over from the expansion of δttp̂i, the following
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Figure 6: Backwards and centered spatial differences, in terms of FV cells.
Dotted lines show pyramidal decomposition of C0. Volume pertaining to
V ∗0 is shaded. Vc denotes the exterior.

condition would be required from an equivalent FV formulation:

λ2Ki
Sh

Vi
= 2 ⇒ Vi = Ki

Sh

2d
(33)

Thus, an equivalent, and multidimensionally consistent to second-
order accuracy, FV interpretation of the DWM boundary cell is
the union of Ki pyramids Pij with a shared apex xi, bases Sij
(with Sij = S) and heights h/2. This is illustrated in Fig. 5 for the
Cartesian DWM on an L-shaped geometry. Note that the pyramidal
boundary cells result in a crude approximation to the desired do-
main. Also note, the so-called “1-D ambiguity” problem [18] was
avoided here, which is to interpret the Courant number as being
set to unity locally at the boundary. It was suggested that this may
lead to stability issues [38], but the DWM boundary model remains
passive since it will always be the case that V ∗i = 0.

Finally, the precise value of γ′ is found to be

γ′ = γ
√
d(Si(b)/S) . (34)

Thus, γ′ is not necessarily the desired acoustic admittance γ. It is
consistent with γ in at least two special cases: d = 1 (as expected)
and when γ = 0. For the boundary cells depicted in Fig. 5 one
has γ′ = 2γ. It should be pointed out that, while only the 2-D
Cartesian case was illustrated, this FV interpretation extends to all
other multidimensional DWM topologies, as long as the associ-
ated isohedral cell tiles d-dimensional space, which excludes the
tetrahedral DWM and the octahedral DWM.

6.2. Centered and non-centered boundaries

Here, the basic 2-D FD scheme for the wave equation, also known
as “standard leapfrog” (SLF), will be used to give an interpretation
of boundaries commonly implemented for a half-plane. Consider
the half-plane terminations featured in Fig. 6. Based on these two
configurations, the spatial derivative in (26) can be approximated
using one of the following spatial differences:

1

h
(p̂0−p̂−1) ≈ −n·∇p̂0 ,

1

2h
(p̂1−p̂−1) ≈ −n·∇p̂0 . (35)

The former is a backwards “non-centered” difference and the latter
is a centered difference. The centered difference has been pre-
ferred in the literature because it is, at first glance, second-order
accurate [18]. However, the first operator is also centered if one

p̂0

p̂2

p̂3

p̂1p̂4

Vc

(a) “Non-centered”

p̂0

p̂2

p̂3

p̂1p̂4

Vc

(b) “Centered”

Figure 7: Re-entrant corner configurations in 2-D with Cartesian grid

redefines the boundary to lie between x0 and x−1, as in Fig. 6a.
The temporal derivative (26) is usually approximated by δt· to give
an overall second-order accuracy. From the FD perspective, the
update at the boundary node p̂0 is then:

p̂+
0 = λ2(p̂−1 + p̂1 + p̂2 + p̂3 − 4p̂0) + 2p̂0 − p̂−0 , (36)

where p̂−1 represents the “ghost node” to be eliminated using the
discretised boundary conditions. After eliminating the ghost node,
the boundary update using the backwards spatial difference is

p̂+
0 =

1

1 + γλ
2

(
λ2(p̂1 + p̂2 + p̂3 − 3p̂0) + 2p̂0 +

(
γλ

2
− 1

)
p̂−0

)
,

(37)
and the boundary update using the centered spatial difference is

p̂+
0 =

1

1 + γλ

(
λ2(2p̂1 + p̂2 + p̂3 − 4p̂0) + 2p̂0 + (γλ− 1) p̂−0

)
.

(38)
On the other hand, both cases are summarised by the FV update:

p̂+
0 =

1

1 + γσ

(
c2k2

V0h

3∑
j=1

S0j(p̂j − p̂0) + 2p̂0 + (γσ − 1) p̂−0

)
,

(39)
where σ := ckS0(b)/(2V0). For the full cell, one has S0(b) =

S0j = h for j ∈ {1, 2, 3} and V0 = h2. Thus σ = λ/2 and the
“backwards” update (37) is obtained (c2k2S0j/(V0h) = λ2). For
the half cell, one has S0(b) = S01 = h and S02 = S03 = h/2,
meanwhile V0 = h2/2, so σ = λ and the “centered update” (38)
is obtained.

In terms of stability, the full-cell has V ∗0 = h2/4 remaining af-
ter subtracting interior pyramids (seen in Fig. 6a), and the half-cell
has V ∗0 = 0. Thus, both conditions remain stable with λ =

√
1/2,

which is consistent with the literature [18, 33]. On the other hand,
using the stability condition derived in [14] one would obtain a
restriction of λ ≤

√
1/3 at the half-cell, which is too strict.

It is straightforward to extend this type of analysis to the corner
case in 2-D (quarter-cell, Fig. 4d) and further, to wall, edge, corner
FD conditions with cubic cells in 3-D [18]. These turn out to be
cubic cells that are cut into one-half, one-quarter, and one-eighth
respectively.

6.3. Re-entrant corners

Re-entrant corners are simple examples of irregular geometries to
be modelled. An example re-entrant corner is displayed in Fig. 7,
in two different configurations with respect to a square grid. In
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Figure 8: Top: two test domains. The scheme is initialised by setting p̂ to
zero at t = 0, and p̂ is set to -1 at the point marked by blue dot and 1 at the
point marked by the red dot at t = k. Bottom: outputs from simulations,
read at a point on the interior of the domain.

the FD paradigm, one proceeds with a specialised boundary update
only when there is a ghost node to be eliminated. In this case, there
is no ghost node at the interior corner node, so one might proceed
at x0 with the usual interior update

p̂+
0 = λ2(p̂1 + p̂2 + p̂3 + p̂4 − 4p̂0) + 2p̂0 − p̂−0 . (40)

The first configuration, seen Fig.7a, is the implied geometry when
“non-centered” boundary updates are applied at the points adjacent
to the corner node (x3 and x4). There is no problem with this case
as the re-entrant corner cell is a regular interior cell.

The second configuration, seen Fig.7b, requires more consider-
ation. It has been shown that when centered boundary updates are
applied at points x3 and x4 they correspond to half-cells. Simply
applying (40) to the interior corner node [18] would imply that C0
is no different from an interior cell, but this would not agree with
the half-cell neighbours, since the side lengths do not match. A
more coherent update at x0 for this configuration would take into
account the volume and sides of this “three-quarter cell”. It would
be difficult to arrive at such an update using only the FD framework
since there are no accessible side and volume parameters to set. On
the other hand, the following update, which is consistent with the
90-degree interior corner, can be obtained from a FV perspective:

p̂+
0 =

(
2λ2

3
(2p̂1 + 2p̂2 + p̂3 + p̂4 − 6p̂0) + 2p̂0 + σ2p̂

−
0

)
/σ1 ,

(41)
where σ1 = 1 + 2γλ

3
and σ2 = 2γλ

3
− 1. This update ensures

stability because V ∗0 = 0 for the three-quarter cell.
It remains to be seen if the usual update, (40), applied at the

interior corner node in the “centered” configuration leads to insta-
bilities. To this end, consider the following experiments on the two
L-shaped geometries depicted in Fig. 8. The boundaries are made
lossless (γ = 0) and the usual interior update (40) is applied to
the interior corner node. The Courant number is set to the usual
λ =

√
1/2. The input and output locations are marked in the

figures, and the scheme is excited by a non-zero initial condition.
The two outputs are shown in Figs. 8a and 8b. In the first case
the scheme is clearly unstable as it exhibits exponential growth.
However, the same growth is not seen in the second case, even
after 3×105 time-steps. Thus, employing the usual update at a
re-entrant corner adjacent to “centered” boundaries does not always

0 500

−2

0

2

x 10
−15

time−steps

0 500
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Figure 9: Energy variation for re-entrant corner tests on Domain A using
three-quarter cell (left), full cell (middle), and DWM boundaries (right).

lead to instabilities and appears to depend on the overall geometry
of the domain. Nevertheless, it would be wise to employ (41) or
a full-cell variant since stability will be ensured. The problematic
domain (Domain A) was also simulated with the three-quarter cell
update (41) and, as expected, this simulation was found to be stable,
and more precisely, energy-conserving to machine accuracy, as
shown in Fig. 9. The energy was calculated using the expression
given in [15] (left out for brevity). Employing the full-cell config-
uration and the 1-D DWM boundaries on the problematic domain
also ensures numerical stability and energy-conservation to machine
accuracy. The code used for these simulations will be available at:
http://www2.ph.ed.ac.uk/~s1164563/dafx14.

7. CONCLUSIONS AND FUTURE WORK

In this study, finite volume equivalences were established for cer-
tain FD and DWM schemes for the wave equation and staggered
(FDTD) schemes for conservation equations. It was shown that the
underlying connection between pointwise FD methods and finite
volume methods is a pyramidal decomposition, given certain con-
straints on the volumetric cells and their neighbours. Additional ge-
ometrical interpretations were provided for stability conditions. The
“centered” and “non-centered” half-plane boundary updates were
shown to be special cases of a FV update. The “1-D” DWM bound-
ary model was shown to have a consistent interpretation in d > 1,
but that there may be discrepancies with the desired acoustic ad-
mittance and domain geometry. Commonly used re-entrant corner
updates combined with centered edge conditions in the 2-D Carte-
sian scheme were shown to have geometrical inconsistencies, lead-
ing to unpredictable instabilities. A stable and energy-conserving
re-entrant corner update was proposed for the 2-D Cartesian case.

It is straightforward to extend the re-entrant corner analysis to
more general schemes in 2-D [39] and 3-D [34], of which the stan-
dard Cartesian schemes are special cases. As such, the geometric
inconsistencies and possible instabilities reported here extend to pro-
posed re-entrant corner boundary updates for nine-point schemes in
2-D [39] and 27-point schemes in 3-D [34], since the volume and
side parameters of re-entrant cells were not taken into account when
centered conditions were applied to adjacent cells. Such instabili-
ties have been observed in practice using the proposed interior edge
conditions [40]. A matrix eigenvalue analysis of the re-entrant edge
in the 3-D SLF scheme can also be found in [41] and conclusions
were obtained that are similar to those presented here.

One could proceed and work out the correct re-entrant edge
and re-entrant corner updates for the 3-D SLF scheme, to be com-
bined with centered half-plane (half-hyperplane) and quarter-plane
terminations, but such boundary updates will still amount to “stair-
case” boundaries for irregular (curved, slanted) geometries, so they
will be no more valid than full-cell staircase boundaries, for which
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stability is guaranteed (this was proved in Section 5.2). A FV
meshing pre-processing step, successfully implemented, should
provide coefficients for all the specialised boundary updates. Strate-
gies for meshing will invariably need to take into account stability
conditions, and this will present new challenges.

More generalised impedance boundary models, such as those
in [18], which differ in the time-varying components, were not
featured, but similar impedance boundary conditions can be found
in [15]. The analysis presented here extends to those boundary mod-
els, since the condition to bound the total interior energy, (20), does
not change as long as the discrete temporal operators are chosen
properly and the impedance parameters are non-negative [15].
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